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 ABSTRACT 
 

Background and Aim: Avian pathogenic Escherichia coli (APEC) is a major cause of colibacillosis in poultry, contributing to 
systemic disease and economic loss. This study investigated virulence genes profile, biofilm formation, and antimicrobial 
and disinfectant resistance in Escherichia (E.) coli isolates from broiler chickens in Qazvin, Iran. 

Materials and Methods: Liver samples were collected from 50 broiler chickens diagnosed with colibacillosis. Escherichia coli 
isolates were confirmed biochemically. Antibiotic susceptibility was evaluated using disk diffusion method, and virulence 
genes were detected via PCR. Biofilm formation was assessed using crystal violet staining. Minimum inhibitory 
concentration (MIC) and minimum bactericidal concentration (MBC) values for formaldehyde, glutaraldehyde, and 
hydrogen peroxide were determined using broth microdilution. 

Results: Among 50 isolates, 82% exhibited multidrug resistance (MDR) and 30% were extended-spectrum beta-lactamase 
(ESBL) producers. The most frequent and the least common genes were iss (66%), and papC (4%), respectively. All isolates 
formed biofilms, with 72% classified as strong producers. Formaldehyde and hydrogen peroxide exhibited the lowest MIC 
and MBC values (≤ 0.009%), while glutaraldehyde required higher concentrations for inhibitory and bactericidal activity 
(0.078%). 

Conclusion: High rates of MDR and biofilm formation among APEC isolates highlight the need for effective antimicrobial 
stewardship and disinfection strategies in poultry production systems. 
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1. Introduction

vian pathogenic Escherichia coli (APEC) is 
a subset of extra-intestinal pathogenic E. 
coli (ExPEC) capable of causing 
colibacillosis, a systemic disease in poultry 

characterized by septicemia and lesions in multiple 
organs. Common pathological manifestations include 
pericarditis, air sacculitis, perihepatitis, and peritonitis 
(1). Colibacillosis is a leading cause of morbidity and 
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mortality in poultry, resulting in considerable 
economic losses, estimated at approximately $40 
million annually in the United States alone (2). APEC 
primarily invades the respiratory and gastrointestinal 
tracts, particularly under stress-related conditions 
that compromise epithelial barriers (3). Vertical 
transmission from infected breeders via contaminated 
eggs has also been documented as a significant route 
of spread (4). Importantly, APEC strains share several 
virulence-associated genes with human ExPEC strains, 
raising concerns about their potential zoonotic threat 
(5). 

Key virulence genes associated with APEC strains 
include vat (virulence-associated toxin), papC (P 
fimbrial adhesin), iucD (a gene involved in the 
synthesis of the iron-uptake system), iss (increased 
serum survival), tsh (temperature-sensitive 
hemagglutinin), astA (heat-stable enterotoxin), and 
cvaC (colicin V production) (6, 7). Previous studies 
have reported high detection rates of iss (60–100%), 
iucD (40–98%), tsh (25–70%), and cvaC (20–60%) in 
APEC isolates from poultry, while papC and astA have 
been detected less frequently, ranging from 5–30% 
depending on geographic location and production 
system (8-12). The presence of these virulence 
determinants enhances APEC’s pathogenic potential, 
emphasizing the importance of targeted control 
measures in poultry farming. 

Biofilm formation is another key survival mechanism 
for APEC. Biofilms protect bacteria from 
environmental stresses and antimicrobial agents, 
making infections harder to treat and eradicate (13, 
14). Moreover, biofilms promote horizontal gene 
transfer, facilitating the spread of antimicrobial 
resistance (AMR) and virulence genes among bacterial 
populations, even across species (15). The 
extracellular matrix of biofilms offers physical 
protection, further contributing to persistence against 
antibiotics, disinfectants, and host immune defense. 
This resilience complicates the management of 
biofilm-associated infections in both clinical and 
agricultural settings (16). 

Antibiotic resistance is widespread in poultry 
operations, with resistant bacteria capable of 
transmission to humans via contaminated food, 
water, or direct contact with poultry or waste 
products (17). Recognizing this threat, international 
health organizations have identified antimicrobial 
resistance as a critical global health issue (18, 19). Due 
to its ubiquity in the gut and adaptability, E. coli serves 
as a useful indicator organism for monitoring 
resistance trends in livestock. Notably, poultry-
derived E. coli strains have been identified as potential 
reservoirs for resistance genes that could be 
transferred to human pathogens (20).  

Effective hygiene practices and proper use of 
disinfectants are essential components of infection 
control. Broad-spectrum disinfectants play a crucial 
role in reducing environmental bacterial loads and 
preventing re-infection of flocks and workers (21). 
However, misapplication, such as using incorrect 
concentrations, expired products, or failing to clean 
surfaces before disinfection, can undermine their 
efficacy (22). Given these challenges, the present 
study aims to isolate E. coli strains from broiler 
chickens diagnosed with colibacillosis in Qazvin, Iran, 
and to characterize their virulence genes profile, 
biofilm-forming ability, and resistance to both 
antimicrobial drugs and common disinfectants. The 
findings will provide valuable insights to inform clinical 
treatment strategies and preventive measures, 
contributing to improved poultry health and reduced 
economic impact on the industry. 
 

2. Materials and Methods 

2.1 Sampling and Bacterial Isolation 

Between May 2023 and March 2024, liver samples 
were collected from 50 broiler chickens diagnosed 
with colibacillosis. Birds were selected using a 
convenience sampling method from commercial 
broiler farms in Qazvin Province, Iran, based on the 
presence of clinical signs and postmortem lesions 
consistent with colibacillosis. All procedures involving 
animals were reviewed and approved by the Ethics 
Committee of Qazvin University of Medical Sciences 
(Approval code: IR.QUMS.REC.1402.185). Sample 
collection was conducted following institutional and 
national guidelines for animal care and use. The 
samples were transferred to the Microbiology 
Research Center of Qazvin University of Medical 
Sciences for further processing under sterile 
conditions. Aseptic swabs from the liver samples were 
streaked onto MacConkey agar (HiMedia, M081) and 
incubated aerobically at 37°C for 24 hr. Colonies were 
then sub-cultured onto eosin methylene blue (EMB) 
agar (HiMedia, M317) and incubated at 37°C 
overnight. Colonies exhibiting a characteristic green 
metallic sheen, as well as other typical E. coli 
morphologies, were selected as suspected E. coli. 
These isolates were then confirmed by colony 
morphology, Gram staining, and a series of 
biochemical tests (indole, methyl red, Voges-
Proskauer, citrate utilization, catalase, oxidase, and 
motility indole ornithine tests). 

2.2 Antibiotic Susceptibility Testing 

Antibiotic susceptibility testing was conducted using 
disk diffusion method under the Clinical and 
Laboratory Standards Institute (CLSI 2024) guidelines. 
CLSI M100-34 (2024) was used for antibiotics with 
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human breakpoints, and CLSI VET01-S2 was used for 
veterinary-specific agents. The following antibiotics 
were evaluated: cefoxitin (FOX), ceftazidime (CAZ), 
ceftazidime-clavulanate (CZA), cefotaxime (CTX), 
cefotaxime-clavulanate (CTC), cefepime (FEP), 
chloramphenicol (C), meropenem (MEM), gentamicin 
(GM), ciprofloxacin (CP), trimethoprim-
sulfamethoxazole (SXT), nitrofurantoin (F), 
doxycycline (D), enrofloxacin (NFX), and florfenicol 
(FF). In addition, the minimum inhibitory 
concentration (MIC) of colistin was determined using 
broth microdilution method. Quality control for the 
antibiotic disks was performed using E. coli ATCC 
25922, Klebsiella pneumoniae ATCC 700603, 
Pseudomonas (P.) aeruginosa ATCC 27853, and 
Enterococcus faecalis ATCC 29212 as standards for the 
Mueller-Hinton agar culture medium. Extended-
spectrum beta-lactamase (ESBL)-producing isolates 
were detected using phenotypic combination disk 
diffusion techniques as described previously (19). 
Multidrug resistance (MDR) refers to the acquired 
inability to respond to at least one drug from three or 
more different categories of antimicrobials. On the 

other hand, extensively drug resistance (XDR) is 
characterized by the lack of susceptibility to at least 
one drug in all but two or fewer categories of 
antimicrobials (23). 

2.3 Detection of virulence genes 

Seven virulence genes associated with APEC isolates 
were investigated using Polymerase Chain Reaction 
(PCR) with specific primer sequences outlined in Table 
1. A positive control strain was included for each gene. 
DNA extraction was performed using the boiling 
method (24). Briefly, bacterial suspensions were 
adjusted to 0.5 McFarland standard in 1X TE buffer, 
vortexed, boiled for 10 min, centrifuged, and the 
supernatant was stored at -20°C. PCR amplification 
involved an initial denaturation at 94°C for 5 min, 
followed by 30 cycles of 30 sec at 94°C (denaturation), 
30 sec at 54°C (annealing), and 2 min at 72°C 
(extension), concluding with a final extension at 72°C 
for 10 min. PCR products were visualized on 2% 
agarose gel using transillumination. 

 

Table 1. Primer sequences of E. coli virulence genes. 

 

2.4 Biofilm Formation 

The biofilm formation ability of the isolates was 
assessed using crystal violet staining method (25). 
Confirmed E. coli isolates were streaked on tryptic soy 
agar (TSA) and incubated at 37°C for 24 hr. Fresh 
colonies were then inoculated into 5 mL of sterile 
tryptic soy broth (TSB) and incubated at 37°C for 18–
24 hr with shaking at 120 rpm. The optical density (OD) 

was measured at 600 nm after standardizing the 
bacterial suspension to 0.5 McFarland standard (1.5 × 
10⁸ CFU/mL). Each bacterial suspension (200 µL) was 
placed in a sterile 96-well microplate, alongside a 
positive control (strong biofilm producer; P. 
aeruginosa) and a negative control (TSB without 
bacteria), and incubated for 24 hr at 37°C. After 
incubation, the media were removed, and the wells 
were washed three times with PBS (pH 7.2). To fix the 

Genes Primer sequences (5′➔3′) Size (bp) Hybridization 
Temperatures 

vat 
F-GTATATGGGGGGCAACATAC 
R-GTGTCAGAACGGAATTGTCG 

708 58 

papC 
F-GTGGCAGTATGAATGACCGTTA 

R-ATATCCTTTCTGCAGGGATGCAATA 
205 60 

iucD 
F-ACAAAAAGTTCTATCGCTTCC 
R-CCTGATCCAGATGATGCTC 

693 58 

iss 
F-CAGCAACCCGAACCACTTGATG 
R-AGCATTGCCAGAGCGGCAGAA 

323 60 

tsh 
F-GGGAAATGACCTGAATGCTGG 
R-CCGCTCATCAGTCAGTACCAC 

420 54 

astA 
F-TGCCATCAACACAGTATATCC 

R-TAGGATCCTCAGGTCGCGAGTGA 
111 50 

cvaC 
F-TGGTAGAATGTGCCAGAGCAAG 

R-GACTGTTTGTAGCGAAGCC 
1181 60 
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biofilm, 200 µL of 95% methanol was added for 15 min 
at room temperature. Wells were then stained with 
200 µL of 1% crystal violet for 15 min and washed 
again with PBS. Finally, 200 µL of 33% acetic acid was 
added and shaken for 15 min, and biofilm formation 
was quantified by measuring the absorbance at 570 
nm (OD₅₇₀) using a microplate reader (BioTek, Epoch, 
USA). Each assay was performed using two technical 
replicates per isolate, and the experiment was 
repeated independently three times on separate days 
to ensure consistency and reproducibility of results. 
The average OD of the negative control wells (ODC) 
was 0.112 ± 0.03. Based on this value, the isolates 
were categorized as weak (ODC< OD ≤2×ODC), 
moderate (2×ODC < OD ≤4×ODC), and strong biofilm 
producers (OD >4×ODC) (26). 

2.5 Disinfectant Susceptibility 

Formaldehyde, glutaraldehyde, and hydrogen 
peroxide (H2O2) were selected for testing as they are 
routinely used disinfectants in poultry farms in Iran 
and worldwide, known for their broad-spectrum 
antimicrobial activity and widespread application in 
farm sanitation protocols. The MIC for three 
disinfectants against APEC strains, was determined 
using broth microdilution assay. The initial stock 
concentrations were 37% for formaldehyde, 25% for 
glutaraldehyde, and 35% for hydrogen peroxide. To 
prepare working solutions, 10% concentrations of 
each were made, and subsequently, two-fold serial 
dilutions were performed on these 10% solutions. The 
assay was performed in a 96-well plate, with each well 
containing 100 µL of TSB medium and serial dilutions 
of disinfectants. A 100 µL suspension of bacteria 
(1.5×106 cfu/mL) was added to each well, and the 
plate was incubated at 37°C for 24 hr. MIC was defined 
as the lowest disinfectant concentration without 
visible turbidity compared to control (ATCC strain 
25922) wells. For minimum bactericidal concentration 
(MBC), 100 µL from wells at or above the MIC was 
plated on Mueller-Hinton agar. After 24-hr incubation 
at 37°C, if fewer than 15 colonies formed, that dilution 
was considered MBC. If more than 15 colonies 
appeared in the MIC well, the previous dilution was 
identified as MBC. If the MIC well had 15 or fewer 
colonies, it was classified as MIC and MBC both. 

2.6 Statistical Analysis  

The data analysis was performed using Chi-square 
and Fisher's exact tests, with a significance level set at 
5%, using SPSS version 16 software. 
 

3. Results 

3.1 Bacterial Isolation and Antimicrobial 
Susceptibility 

A total of 50 E. coli isolates were collected from 50 
broiler chickens’ specimens with colibacillosis and 
confirmed biochemically. The antibiogram test results 
indicated that the highest levels of sensitivity were 
recorded for nitrofurantoin (96%), meropenem (94%), 
cefoxitin (94%), gentamicin (92%), cefepime (92%), and 
colistin (90%). In contrast, the isolates showed the 
greatest resistance to tetracycline (86%), trimethoprim-
sulfamethoxazole (82%), chloramphenicol (80%), 
florfenicol (72%), doxycycline (68%), and levofloxacin 
(66%) (Figure 1). Results indicated that 41 (82%) isolates 
displayed multidrug resistance (MDR). Notably, none of 
the strains showed characteristics of extensively drug-
resistant (XDR) or pan-drug-resistant (PDR) profile. 
Furthermore, 15 (30%) of the isolates were identified as 
producers of ESBL using combination disk diffusion 
method. 

3.2 Detection of Virulence Genes 

The PCR investigation of the seven virulence-associated 
genes (iss, tsh, papC, iucD, vat, cva, and astA) revealed 
varying frequencies among the isolates (Figure 2). The 
most prevalent gene was iss, found in 33 isolates (66%), 
while the least common gene was papC, which was 
detected in only 2 isolates (4%). Notably, 28% of the 
samples did not carry any virulence genes. Additionally, 
8% of the samples harbored six genes simultaneously, 4% 
contained five genes, 14% had four genes, 10% had three 
genes, 16% had two genes, and 20% had at least one 
gene. 

3.3 Biofilm Formation 

The quantitative results of biofilm formation in E. coli 
isolates indicated that all tested isolates (100%) were 
capable of forming biofilms. Among them, approximately 
72% of E. coli strains demonstrated high biofilm 
formation ability, 24% exhibited moderate biofilm 
formation, and about 4% showed weak biofilm 
formation (Figure 3). Additionally, statistical analysis 
revealed significant correlation between MDR 
phenotype and biofilm strength (P=0.046), suggesting 
that all MDR isolates were more likely to exhibit strong 
biofilm-forming ability. However, when the number of 
virulence genes was compared across different biofilm 
categories (weak, moderate, strong), no significant 
association (P=0.144) was found, implying that virulence 
gene load does not predict biofilm strength.  

3.4 MIC and MBC Determination Results for 
Disinfectants 

The MIC and MBC of 50 APEC isolates were evaluated 
against three commonly used disinfectants; 
formaldehyde, hydrogen peroxide (H₂O₂), and 
glutaraldehyde, using broth microdilution method.  For 
formaldehyde and hydrogen peroxide, all isolates 
exhibited MIC and MBC values at 1/512 dilution, which 
corresponds to a concentration of ≤ 0.009%. For 
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glutaraldehyde, the MIC and MBC were observed at 1/64 
dilution (equivalent to 0.078%) for the tested isolates. 
These results are summarized in Table 2. 
 

Table 2. MIC and MBC values of E. coli isolates (n = 50) against selected disinfectants. 

 

 

 
Figure 1. Antibiotic resistance percentages of E. coli isolates (n = 50) recovered from broiler chickens with colibacillosis. FOX = 

cefoxitin; CAZ = cftazidime; CZA = ceftazidime–clavulanate; CTX = cefotaxime; CTC = cefotaxime–clavulanate; FEP = cefepime; MEM 
= meropenem; GM = gentamicin; CP = ciprofloxacin; SXT = trimethoprim–sulfamethoxazole; F = nitrofurantoin; LEV = levofloxacin; 
CL = colistin; D = doxycycline; NFX = enrofloxacin; C = chloramphenicol; TE = tetracycline; FF = florfenicol. (Designed by Authors, 
2025). 
 

Disinfectant MIC Dilution MIC value MBC Dilution MBC value 

Formaldehyde 1/512 ≤ 0.009 1/512 ≤ 0.009 

Hydrogen Peroxide 1/512 ≤ 0.009 1/512 ≤ 0.009 

Glutaraldehyde 1/64 0.078 1/64 0.078 
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Figure 2. Frequency of virulence genes in E. coli isolates (Designed by Authors, 2025). 

 

 
Figure 3. Frequency of biofilm-producing strains (Designed by Authors, 2025). 

 

4. Discussion

Avian colibacillosis caused by APEC remains a 
significant concern for poultry production and public 
health, particularly in regions with expanding poultry 
industries and limited antimicrobial regulation (27-
29). The emergence, dissemination, and persistence of 
antibiotic-resistant E. coli strains are especially 
problematic in low and middle-income countries 
(LMICs), where antimicrobial stewardship practices 
may be suboptimal (30). It is projected that global 
antimicrobial use in food animal production will 
increase by 67% by 2030, with 129% rise expected in 
the Asia-Pacific region for chicken production alone 
(31). In Iran, reliable data on prevalence of resistance 
among APEC strains to various antimicrobial agents 
and disinfectants is limited. Thus, this research aimed 
to examine the patterns of antibiotic and disinfectant 

resistance, assess biofilm-forming capabilities, and 
identify virulence genes in E. coli isolated from broiler 
chickens.  

In this work, high levels of resistance were observed 
for commonly used antibiotics, notably tetracycline 
(86%), trimethoprim-sulfamethoxazole (82%), and 
chloramphenicol (80%). These rates exceed those 
reported in the United States (32) and align closely 
with findings from recent studies in Iran (33) and Egypt 
(34). Dolejská et al (35) also documented elevated 
tetracycline resistance among E. coli isolates from 
black-tailed chickens; however, their isolates 
remained fully susceptible to the third-generation 
cephalosporins like ceftazidime, unlike our study (35). 
Tetracycline has been approved for use in the United 
States, China, Poland, the United Kingdom, France, 

66%

28%
4%

42%

22%

26%

18%

Frequency (%)

iss tsh papC iucD vat cva astA
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Brazil, and Spain for therapeutic, prophylactic, and 
growth promotion purposes for more than 50 years 
(36). Additionally, our study revealed that 82% of APEC 
isolates exhibited MDR, and 30% were ESBL producers 
that is higher than a similar previous study in Iran (37). 
In China, a longitudinal study of E. coli isolates from 
sick chickens showed a substantial increase in 
antimicrobial resistance from 1993 to 2013, with MDR 
rates approaching 90% by the end of the study period 
(38). Similarly, ESBL prevalence among APEC isolates 
from broilers in eastern Thailand was significantly 
higher than our 30% rate, indicating regional variation 
in ESBL dissemination (39). Notably, Dutch 
surveillance studies have reported ESBL-producing E. 
coli on 100% of broiler farms, with strong genetic 
similarity between poultry, meat products, and clinical 
isolates, emphasizing the zoonotic risk and 
interconnectivity underscored by the One Health 
approach (40, 41). In our study, we also found that 
10% of E. coli isolates exhibited resistance to colistin. 
This is particularly alarming as colistin is considered a 
last-resort antibiotic for treating bacterial infections in 
humans (42). 

The APEC-associated virulence gene profiling 
revealed a diverse array of virulence factors among 
the E. coli isolates. Our study found different 
frequencies in iss (66%), iucD (42%), tsh (28%), cvi/cva 
(26%), astA (18%), and papC (4%) genes. A similar 
order of prevalence of iss (100%)> iucD (97.8%)> tsh 
(62.2%)> cvi/cva (57.8%) was reported in Nepal (28). 
However, the prevalence of papC gene (4%) in our 
study was lower than that in previous studies 
developed in Turkey (43), and Germany (44). 
Interestingly, 28% of the isolates in our study lacked 
any targeted virulence genes. Several possible 
explanations may account for this finding. First, these 
isolates may harbor other untested virulence genes or 
possess novel or less-characterized genetic 
determinants contributing to their pathogenicity (7). 
Second, since the isolates were obtained from 
diseased birds based on clinical diagnosis and 
macroscopic lesions, some may represent 
opportunistic strains that proliferated in 
compromised hosts rather than the infection with a 
specific pathotype (45). Future studies using whole-
genome sequencing (WGS) or expanded PCR panels 
are warranted to provide a more comprehensive 
virulence profile and confirm APEC classification. 

The high percentage of strong biofilm producers 
suggests that biofilm-associated infections could be a 
persistent challenge in poultry farming (46). A study 
conducted by Pavlickova et al (47) in 2017 found that 
68% of E. coli isolates obtained from chicken meat and 
wild poultry were capable of forming biofilms (47). 
However, in the present study, 100% of the isolates 
exhibited some form of biofilm formation. Bacteria 

that form biofilms pose a threat to public health 
because they can attach to different surfaces. When 
these biofilm structures are disrupted, they can 
release pathogenic microorganisms and lead to the 
contamination of products (48). Given that the 
adhesion of these bacterial cells can affect the 
colonization process on non-living surfaces. Although 
we did not directly assess environmental persistence, 
the high proportion of strong biofilm-producing 
isolates observed in this study supports potential for 
increased survival and resistance to cleaning agents, 
as biofilms are well-documented to protect bacteria 
from environmental stressors (49).  

GLU, FOR, and H2O2 are the primary active 
components found in disinfectants utilized for 
cleaning and disinfection processes on poultry farms 
(50). The disinfectant MIC and MBC results showed 
that all isolates were inhibited and killed at 
concentrations ≤ 0.009% for FOR and H2O2, and 
0.078% for GLU. However, the higher MIC of GLU 
could be due to the interference of media components 
with GLU, resulting in fewer active compounds 
available to interact with bacteria (51, 52). While no 
established resistance breakpoints exist for 
disinfectants, these values are substantially lower 
than recommended in-use concentrations, indicating 
effective in vitro activity. Our findings suggest no 
reduced susceptibility to these disinfectants under the 
test conditions. These results are consistent with 
studies by Oosterik et al (53). There is limited 
information regarding the basis of E. coli resistance to 
disinfectants, with only the resistance mechanisms 
against quaternary ammonium compounds (QAC) 
having been documented (54, 55). Elevated 
concentrations of these disinfectants pose significant 
health risks to the healthcare workers and patients. 
They are potent biocidal agents but are also 
associated with respiratory irritation, skin 
sensitization, and mucous membrane damage. 
Formaldehyde is recognized as a human carcinogen, 
and its vapor can cause severe irritation and long-term 
health issues (56). Using these disinfectants, adhering 
to recommended concentrations, safety protocols, 
and integrating comprehensive infection control 
measures is essential to maximize benefits while 
minimizing risks. Further studies could explore the 
long-term effects of these disinfectants, their 
potential resistance development, and environmental 
impacts to ensure sustainable practices in poultry 
farming. 
 

5. Conclusion 
This study highlights significant public health and 

biosecurity concerns associated with APEC in broiler 
farms in Qazvin, Iran, evidenced by high rates of 
multidrug resistance (82%) and ESBL production (30%). 
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Frequent detection of virulence genes, particularly iss 
(66%), combined with widespread biofilm formation, 
indicates a strong potential for environmental 
persistence and zoonotic transmission. Based on the 
demonstrated in vitro efficacy of commonly used 
disinfectants such as formaldehyde and hydrogen 
peroxide, we recommend routine rotation of 
disinfectants to prevent reduced effectiveness due to 
microbial adaptation. Additionally, the prudent use of 
antimicrobials, including limiting colistin use in 
veterinary practice, is essential to preserve the efficacy 
of critically important antibiotics. To mitigate the 
spread of resistant and virulent APEC strains, enhanced 
surveillance, strengthened biosecurity, and 
implementation of antibiotic stewardship programs are 
urgently needed in poultry production systems. 
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